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A NEW OUTFLOW BOUNDARY CONDITION 
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SUMMARY 

Boundary conditions come from Nature. Therefore these conditions exist at natural boundaries. Often, 
owing to limitations in computing power and means, large domains are truncated and confined between 
artificial synthetic boundaries. Then the required boundary conditions there cannot be provided naturally 
and there is a need to fabricate them by intuition, experience, asymptotic behaviour and numerical 
experimentation. In this work several kinds of outflow boundary conditions, including essential, natural and 
free boundar conditions, are evaluated for two flow and heat transfer model problems. A new outflow 
boundary condition, called hereafter the f?ee boundary condition, is introduced and tested. This free 
boundary condition is equivalent to extending the validity of the weak form of the governing equations to 
the synthetic outflow instead of replacing them there with unknown essential or natural boundary 
conditions. In the limit of zero Reynolds number the free boundary condition minimizes the energy 
functional among all possible choices of outflow boundary conditions. A review of results from applications 
of the same boundary conditions to several other flow situations is also presented and discussed. 

KEY WORDS Open boundary conditions Backward-facing step Unbounded flow Free boundary condition 

1. INTRODUCTION 

In order to solve differential equations on finite domains, boundary conditions are needed along 
the entire boundary or parts of the boundary, depending on the nature of the differential 
equations-hyperbolic, parabolic, elliptic.' These boundary conditions are provided by the 
physics when the finite domain is the actual physical domain, e.g. flow in a cavity, heat transfer 
and reaction in a closed reactor, loading of finite solids. Infinitely large physical domains often 
need to truncated to synthetic, artificial finite domains because of limitations in computational 
speed and time, e.g. flow in long converging channels, slowly decaying thin films, heat and mass 
transfer through infinite and semi-infinite solids. For these problems there is an uncertainty about 
the appropriate boundary conditions at the synthetic boundaries because the physics is not 
known there. This poses significant computational difficulties for even relatively well-behaving 
steady systems. These difficulties grow beyond control for unsteady and/or unstable systems. 

A case of instance is shown in Figure l(a), where a thin film flowing down a long inclined plate 
goes unstable for one reason or another. Boundary conditions at all times are well defined along 
the real boundary, which consists of a chosen inlet, the free surface and the solid wall. In contrast, 
no boundary conditions can be specified at the synthetic outlet for an unsymmetric travelling 
wave, which is the most general case: for example, either a zero free surface slope or a specified free 
surface elevation at the synthetic outflow may impose artificial constraints not necessarily 
corresponding to the local physics; nor can any information from the downstream behaviour be 
utilized to derive asymptotic boundary conditions because the downstream behaviour is un- 
known and hardly predictable. To address problems involving synthetic boundaries, appropriate 
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Figure 1. Several kinds of unbounded flows: (a) unstable thin film; (b) exponentially decaying thin film; (c) axisymmetric 
fibre spinning 

boundary conditions that can mimic or even not alter the local behaviour need to be found by 
numerical experimentation and comparison of predictions with experimental evidence or with 
asymptotic and/or analytic solutions. 

Open boundary conditions are applied at synthetic outflows (and for that matter at synthetic 
inflows) of truncated domains in order to allow phenomena generated in the domain of interest to 
pass through the synthetic boundary without undergoing significant distortion and without 
influencing the interior solution. These conditions received attention initially with hyperbolic 
problems common in oceanography (ocean circulation, eddies, etc.) and meterology (convection, 
weather prediction, air pollution modelling, etc.). They were accommodated by Sommerfeld 
radiation conditions, by one-side differencing methods and by viscous damping at these bound- 
aries. Among them, the Sommerfeld condition formulated as 

a#) a#) -+c-=o 
at ax 

for a quantity 4 at the synthetic outflow propagating at phase velocity c was followed, evaluated 
and developed further by several investigators. ’-’ These conditions remain primarily associated 
with hyperbolic equations solved by finite differences and, unless an asymptotic behaviour 
downstream is known,3 they appear to work only in certain cases and for certain types of 
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propagating waves4 Nevertheless, the Sommerfeld boundary condition, along the lines 
developed in Reference 2, remains the most widely used open boundary condition. 

The simplest cases of flows with synthetic domains involve synthetic boundaries downstream 
whose behaviour can be reasonably approximated by perturbation techniques and asymptotic 
analysis of the equations between the synthetic boundary and far downstream where things are 
settled. A characteristics case is the exponential decay of thin films to planar films far down- 
stream, as analysed by Higgim6 The so-called non-reflective boundary conditions are construc- 
ted along the same lines. Figure l(b) illustrates a case amenable to this kind of approximation. 

A detailed evaluation of open boundary conditions in developing channel flows and thin film 
coating flows was conducted by B i ~ l e r . ~  The most accurate condition was the mixed condi- 
tion-also called the Robin condition-which related the behaviour far downstream to that at 
the synthetic outflow by asymptotic analysis. The traction and free surface inclination boundary 
conditions-also called Neumann conditions-gave satisfactory results too. The least accurate 
boundary condition-also called the Dirichlet condition-was the specification of the variables 
at the synthetic outflow. All the above boundary conditions-Robin, Neumann and 
Dirichlet-are made possible by the fact that the flow downstream from the synthetic outflow is 
in principle amenable to asymptotic analysis. However, in cases where asymptotic analysis is 
impossible, none of these conditions should be applied, because neither the exact values of the 
variables nor their derivatives are known and neither can their relation to the behaviour far 
downstream be found in any asymptotic way. A slightly different approach is to match the three- 
and the two-dimensional domains to two- and one-dimensional domains respectively down- 
stream from a synthetic boundary, as suggested by Kistler and Scriven’ and shown in Figure l(c). 

The approach taken for flows similar to those of Figures l(b) and l(c) requires some knowledge 
of the behaviour downstream from the synthetic boundary and therefore does not apply to flows 
similar to those of Figure l(a). For the latter class of flows an alternative approach was found to 
work reasonably well for several flow situations examined, as follows. Consider the flow of 
a Maxwell viscoelastic liquid in the one-dimensional (averaged) domain of Figure l(c) alone. The 
governing equations are’ 

du t , , + A  z r r - + u , - -  = -2 ( 2 2,) dz’  (4) 

where L is the relaxation time of the viscoelastic liquid and u,, z,, and z ,  are the z-dependent axial 
velocity, axial stress and radial stress respectively on the one-dimensional domain O<z < L. To 
solve this one-dimensional problem, one would need boundary conditions on both the velocity 
and the stress at the synthetic inlet z=O. The difficulty here comes from the fact that the exact 
values of the stresses are unknown at the synthetic inlet; thus the imposition of arbitrary values of 
stress results in an artificial stress boundary layer downstream from z = 0, as demonstrated in 
Reference 9. This dificulty was alleviated by  not imposing any stress boundary condition at the 
synthetic inlet at all or, equivalently, by  extending the validity of the weak forms of equations (3) and 
(4) to the inlet instead of replacing them there by arbitrary stress boundary values. Not only did 
the Newton iteration of the finite element equations converge quadratically, but the converged 
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solution gave the appropriate values of the stress at the synthetic inlet as well; these stresses were 
validated a posteriori by re-solving the same problem with these stresses specified as boundary 
conditions, which eliminated the otherwise induced artificial stress boundary layer. It was 
concluded that the use of the weak forms of equations (3) and (4) as boundary conditions resulted 
in a well-posed non-singular problem, as evidenced by the converged solution and its accuracy. 

The same idea was tried successfully in several other flows on synthetic (truncated) domains, 
including lubricated squeezing flow of Newtonian liquids,' rotating thin films of Newtonian and 
shear-thinning liquids'' and channel flow of viscoelastic liquids.'* In this work this idea is further 
evaluated for two prototype flows and geometries which were topics of the Minisymposium 
on Open Boundary Conditions held at Stanford, CA on 14 July 1991 prior to the Seventh 
International Conference on Numerical Methods in Laminar and Turbulent Flow. 

2. GOVERNING EQUATIONS 

The flow geometries are shown in Figure 2. In Figure 2(b) an incompressible Newtonian fluid 
enters the upper half of a rectilinear channel (stratified backward-facing step, SBFS). As the flow 
progresses, the fluid is rearranged to a parallel flow at the outflow of the long domain after some 
eddy formation in the interior of the channel. The temperature of the fluid is kept constant along 
the floor and along the ceiling of the channel, where also no slip and no mass penetration are 
assumed. The governing equations of the SBFS problem at steady state are 

v . u = o ,  

1 1 
U ' ~ U =  -Vp+-V2u--kT, Re Fr 

1 
Pe 

U' VT=-V2 T. (7) 

Here u=(u, u) is the velocity vector of the fluid, with u and u its components in the x- and 
y-directions respectively, p is the pressure, T is the temperature and k is the unit vector in the 

u = v = o  

outflow boundary 
conditions 

u = v = o  
U = V = O  

-0.5 

T =  1 0.5 I 

outflow boundary 
conditions 

T = O  -0.5 

Figure 2. Domain and boundary conditions for (a) backward-facing step (BFS) and (b) stratified backward-facing step 
(SBFS) problems 
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direction of gravity (opposite to the y-direction). Re = u,, L/v is the Reynolds number, with uo and 
L a characteristics velocity and length respectively and v the kinematic viscosity of the fluid. 
Pe = uo L/a is the Peclet number, with a the thermal diffusivity of the fluid. Fr = (u0/uB)’ is the 
Froude number, with uB, the buoyancy velocity, defined as uB = J(ygATL), where AT is the 
maximum temperature difference, y is the volumetric expansion coefficient and g is the acceler- 
ation due to gravity. The Peclet number is related to the Reynolds number PeEPrRe ,  where 
Pr = V/K is the Prandtl number, with K the thermal diffusivity. In Figure 2(a) the isothermal case of 
the previous flow is analysed (isothermal backward-facing step, BFS). The governing equations of 
the BFS problem are equations (5) and (6), with the Froude number set to infinity in equation (6). 
Hereafter, short domain refers to a domain truncated to seven units of width from the inlet and 
long domain refers to a truncated domain of at least 15 width units. 

3. BOUNDARY CONDITIONS 

The boundary conditions at the physical (real) boundaries (Figure 2) are 

x = O ,  - 0 . 5 < ~ < 0  

u=O, 

u = o ,  

a Tlax = 0; 

~=24y(0.5 -y), 

u = 0, 

T=2y; 

u=o, 

u = o ,  

T=O; 

u=o, 

v = o ,  

T= 1. 

The boundary conditions (lo), (13), (16) and (19) were applied for the SBFS problem alone. 

examined: 
At the synthetic outflow boundary of the domain the following boundary conditions were 

(a) fully developed flow of 

u = - 3yz + 075, (20) 
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ti=O (21) 

dT/dx = 0 (only for the SBFS problem); (22) 
(b) free boundary condition, by simply evaluating the surface integrals of the momentum and 

energy equations in terms of the, as of yet, unknown outflow nodal values of u, v,  p and T along 
with the volume integrals. This is equivalent to extending the weighted momentum and energy 
equations to the synthetic exit, as explained below. The specification of a datum pressure p = O  by 
means of the continuity equation at a unique node of the synthetic outflow was often found to 
improve convergence. 

4. FINITE ELEMENT FORMULATION 

The long flow domain was tesselated into the (58 x 18) rectangular finite elements shown in 
Figure 3, which produced solutions unchanged with further refinement. The unknown velocities 
u and u, the pressure p and the temperatue T were expanded in terms of Galerkin basis functions 
as 

9 9 4 9 

U =  C ~ i @ ,  ti= C t i i@, p =  C p i + i ,  T= r4i, 

where 4i are biquadratic and t,bi bilinear basis functions. The governing equations, weighted 
integrally with the basis functions, resulted in the following continuity, R&, momentum, RL, and 
enegy, RL, residuals: 

i = l  i =  1 i = l  i =  1 

(4 
0.50 

0.00 

-0.50 

(b) 
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Figure 3. (a) Typical finite element tesselation used in this study and (b) refined short computational domain 
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Here I is the identity matrix and T = Vu + ( V U ) ~  the stress tensor. By applying the divergence 
theorem in order to decrease the order of differentiation and to project the natural boundary 
conditions for heat flux and stress at the boundaries of the domain, equations (24) and (25) reduce 
to 

Since essential boundary conditions for u, u and Twill be applied to all but the outflow boundary 
of the domain, equations (26) and (27) will be replaced by equations (8H19) accordingly. 
Additionally, for the SBFS problem, since dT/dx = 0 at the lower half of the entrance, the surface 
integral of the energy equation at this boundary is identically zero. Consequently, the surface 
integrals in equations (26) and (27) still need to be evaluated or replaced or handled in some way 
at the synthetic outflow according to equations (20)-(22) or the free boundary condition. 

The residuals are evaluated numerically by a nine-point Gaussian integration. A system of 
non-linear algebraic equations results, which is solved by Newton iteration according to the 
scheme 

q(n + 1) = q(n) - J - 1 R ( p ) ,  

where q = [ul, u l ,  T I ,  pl ,  . . . , uN, uN, TN, PN] is the vector of the unknowns and J = dR/dq is the 
Jacobian matrix of the residuals R with respect to the nodal unknowns q. The banded matrix of 
the resulting linear equations is solved by a frontal solver13 at each Newton iteration. 

5. RESULTS 

The stratiJ5ed backward-facing step problem (SBFS problem, Figure 2(b)) 

First the fully developed flow boundary condition, equations (20) and (21), at the synthetic exit 
was imposed on a long domain truncated to 15 units of length. With Fr=16/9 and P r = l  
a solution was obtained initially at Re= 1 and zero-order continuation was used to reach 
Re = 800. The Newton iteration converged quadratically within four iterations and the Re- 
number was increased by 50 each time a solution was obtained. The predicted u-velocity profiles 
of the final solution are plotted in Figure 4(a). It is obvious that the flow was not fully developed 
up to x = 14.5; therefore the assumption of a fully developed parabolic u-velocity profile at the exit 
imposes an artificial constraint on the system that violates the continuity of the flow in the 
domain. The results obtained do not predict well the behaviour of the flow near the exit of the 
flow, as shown in Figure 4(a). Since one is uncertain about the actual physics of the problem at the 
synthetic outflow, guessing a probable boundary condition (here the fully developed flow) may 
distort physical reality. Other traditional boundary conditions, of zero axial stress or total force, 
result in the same ambiguities. 

A second approach to the same problem was taken by simply evaluating the surface integral of 
equations (26) and (27) at the outflow along with the volume integrals of the same equations. This 
is equivalent to extending the validity of the weighted momentum equation to the synthetic outlet 
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Figure 4. Predicted axial velocity profiles near exit of long domain for (a) fully developed flow and (b) free boundary 
condition applied at synthetic outflow at x = 15 

instead of replacing it there by risky, unknown essential (or natural) boundary conditions. This is 
thefree boundary conditions. The initial guess was the solution obtained with fully developed flow 
boundary conditions at the exit. The Newton iteration converged in five iterations to the solution 
(Figure 4(b)). The same solution was also obtained with zero-order continuation starting from 
Re = 1. The results indicate that the assumption of fully developed flow at the exit predicts rather 
well the flow behaviour up to eight units upstream from the exit of the long domain. Comparisons 
of the results obtained with the two different boundary conditions are shown in Figures 5 and 6. 
As demonstrated in Figure 4, the error in the u-velocity profile near the exit is alleviated by the 
free boundary condition, which extends the validity of the weighted momentum equation to the 
synthetic outflow without imposing a fully developed flow there. The predicted pressures in 
Figure 5 also show that the fully developed flow assumption was unfortunate as opposed to the 
smooth pressure distribution when the free boundary condition was applied. 

For the energy equation two outflow boundary conditions have been tested (a) equation (22) 
and (b) the free boundary condition, equation (27). In both cases identical results have been 
obtained, as depicted in Figure 7. Consequently, the assumption of negligible heat conduction in 
the x-direction far downstream from the entrance of the domain ( x 2  15) is physically correct. 

As shown by Figure 6, a short truncated domain (x = 7) will cut the development of an eddy. 
Unlike the case of the long domain, a solution that assumes fully developed flow at the synthetic 
exit would be quite inappropriate. Consequently, only a solution with the free boundary 
condition was sought in the case. Again, zero-order continuation was used starting from Re = 1 
to advance to the final solution at Re = 800. The results of this trial are compared with the 
corresponding results obtained with the long domain in Figures 8-10. Apart from an error of up 
to 20% in the pressure alone, right at the outlet, the predictions are satisfactory. It is obvious that 
the free boundary condition at the synthetic outflow preserves the actual physics of the flow 



A NEW OUTFLOW BOUNDARY CONDITION 595 

0.90- 

0.4s. 

0.40- 

0.a- 

0.10- 

& 

Y 
2 0.u. 

B 
0.10- 

0.1s- 

..I*. 

0.W- 

0.0. 1 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 
Y-AXIS 

1 
-0.6 -0.4 -0.2 0.0 0.2 0.4 0. 

Y-AXIS 

Figure 5. Comparison of pressure distributions across channel at (a) x = 7 and (b) x = 15 predicted with fully developed 
flow (-) and free boundary condition (.  . .) with long domain OCXC 15 
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Figure 7. Temperature profiles across channel at (a) x = 14 and (b) x = 15 predicted by both essential and free boundary 
conditions with long domain 0 < x < 15 
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within a certain margin of error. This error is not decreased when the mesh is further refined. 
As shown in Figure 11, the velocity and temperature profiles do not change significantly when 
the fine mesh of Figure 3(b) is used, since the solution obtained with the truncated ‘typical’ 
computational domain (Figure 3(a)) is mesh-independent. In Figure 12 the streamline patterns 
obtained from this solution are compared with the benchmark solution obtained with 
80 x 480= 38400 elements, as communicated by Leone.14 The agreement is remarkable. 

The backward-facing step problem (BFS problem, Figure 2(a)) 

In order to determine the validity of the outflow boundary conditions, a standard solution for 
Re = 800 was calculated. The validity of the tested experimental boundary conditions was 
determined by ‘truncating’ the standard mesh and applying the boundary condition at the new 
synthetic outflow plane. No grid rearrangement was performed when the domain was truncated 
because a boundary condition that truly reflects the flow conditions at this point should converge 
to the standard solution; any other results were just accepted ‘as is’. All finite element com- 
putations were performed using the mesh illustrated in Figure 3(a). 

The standard solution was obtained by applying the fully developed outflow boundary 
conditions on successively longer and longer computational domains. As the domain length 
increases, the flow in close proximity to the exit should reach fully developed (Poiseulle) flow with 
a constant pressure gradient. The continuation method started from Re= 1 and continued up to 
Re = 800. The results for the standard solution (x = 35) are illustrated in Figure 13. The pressure 
distributions along the top, centre and bottom collapse into a single line at a downstream 
location of 15 width units, indicating a constant cross-channel pressure distribution. The flow 
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Figure 11. Comparison of (a) velocity and (b) temperature profiles at x = 7 using truncated ‘typical’ domain of Figure 3(a) 
(-) and refined 46 x 18 domain of Figure 3(b) (---) 
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becomes truly fully developed though at a downstream location of approximately x = 27, which is 
signified by the onset of a linear pressure drop. 

BC1 is simply the assumption of fully developed flow at the synthetic exit. This boundary 
condition was applied at x= 15 where the flow assumes a parallel configuration. Figure 14 
compares the outflow velocity profiles with that of the standard solution. The standard solution 
shows a much higher u-velocity in the centre and lower values near the walls when compared with 
the result with BC1. This occurs because the flow has not recovered from the effects of the low 
fluid velocities in the two eddies located at the top and bottom walls. This is also seen in the 
pressure profiles which are plotted in Figure 15. The standard solution has a constant pressure 
profile at the outlet, while the BC1 solution produces a profile with an increased pressure at the 
centre which serves to decelerate the flow to the assumed fully developed velocity profile. The 
u-velocity component at x = 7 and 3 for the standard solution and that produced by BC1 applied 
at x= 15 also show differences, as do the pressure profiles illustrated in Figures 14 and 15. As 
pointed out earlier, the flow at x = 15 is not fully developed and this assumption clearly violates 
the physics of the flow. This fact is illustrated in Figure 16, where the centreline u-velocity is 
compared with that of the standard solution. The artificial enforcement of BC1 at x = 15 produces 
the ‘wiggle’ in the u-velocity. 

The condition specified in BC2, the free boundary condition, is to calculate the surface integral 
that corresponds to the outflow plane in terms of the, as of yet, unknown boundary nodal values 
for u, u and p .  This condition was applied at the synthetic planes corresponding to x=15 
and 7. Figure 17 illustrates the excellent agreement of the u-component of velocity with that of the 
standard solution. The pressures shown in Figure 18 agree equally well with the standard solution 
pressures. The synthetic plane placed at x = 7  cuts through an eddy at the top wall and is 
challenging to obtain an accurate solution. Zero-order continuation was used to calculate the 
flow field with BC2 applied at x = 7 starting with Re = 1. Quadratic convegence was attained in all 

-0.50 -0.25 0.00 0.25 0 
Channel Elevation 

‘0 

Figure 14. Predicted axial velocity profile at x=15 with fully developed flow boundary condition applied at x=15 
compared with that of standard solution 
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Figure 16. Comparison of centreline u-velocity component of standard solution with corresponding ones obtained with 
fully developed flow boundary condition and with free boundary condition both applied at x =  15 

computations except at extreme values of Re = 750 where convergence degraded to linear. This 
was not the case with the SBFS problem, perhaps owing to the fact that at high Reynolds 
numbers the BFS flow is closer to ideal and therefore more unstable. Despite this problem, 
accurate results were obtained as shown in Figure 19, where a comparison is made of velocity 
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Figure 17. Predicted exit vertical velocity profiles obtained with free boundary condition applied at x=15 and 7 
compared with those of standard solution 

Figure 18. Predicted exit vertical pressure profiles obtained with free boundary condition applied at x=15 and 7 
compared with those of standard solution 

diagrams for both the standard solution and that obtained by BC2. Clearly shown is the 
formation of the secondary eddy which passes directly through the cutting plane. The attachment 
and detachment points of the primary eddy at the bottom correlate closely to those of the 
standard solution. The pressure profile at x = 7 also agrees with that of the standard solution as 
indicated by Figure 18. The BFS problem is characterized by the formation of two eddies: 
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Figure 19. Velocity vector diagrams of standard solution compared with those with free boundary condition applied 
at x=7 

a primary eddy is attached to the step and a secondary eddy is attached to the ceiling as 
illustrated in Figure 20. The primary eddy detaches at the top of the step and attaches at x = 6.1, 
while the secondary eddy separates at x=44  and reattaches at x =  105. Also shown in Figure 20 
are the data of the benchmark solution obtained by Gartling” with 8000 elements. Good 
agreement exists between the truncated domain of this work and the benchmark solution when 
streamline ($) values are compared. 

6. DISCUSSION 

The answer to why the free boundary condition works is not clear from the pure mathematics 
point of view. It,may be the non-linearity of the governing equations which can exhibit local 
ellipticity or hyperbolicity under appropriate conditions.16 This seems not to be the case because 
the same calculations can be made for creeping flow of Re+O as shown in Figure 21. For this 
example the governing equations are elliptic in the velocity u and require boundary conditions 
completely enclosing the domain. One must look more deeply into what is occurring when the 
Galerkin procedure is applied to the Navier-Stokes equations. In this analysis it is not suggested 
that no boundary conditions are required in the mathematical sense. Rather, it would appear that 
the success in applying the free boundary condition is the result of the Galerkin finite element 
procedure itself. In simplified cases the Galerkin procedure produces the same approximations as, 
for example, finite difference approximations. However, for problem statements with non-linear 
terms or multidimensional problems the Galerkin procedure produces a distinct representa- 
tion.” One may gain some insight to the reason as to why applying the free boundary condition 
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Figure 20. Predicted streamline patterns of standard solution and with free boundary condition applied at (a) x = 15 and 
(b) x = 7 for isothermal BFS problem compared with data given in benchmark solution15 

works and under what conditions it will work by examining the Stokes creeping flow limit in 
more detail. The Stokes equations are obtained by minimizing the viscous dissipation function 
subject to the constraint of mass conservation. This can be stated in a functional form as 

where I is the Lagrange multiplier which is used to enforce conservation of mass. A quick 
calculation shows that I is identical to twice the pressure p and the final form of the functional 
becorne~'~. '* 

r 
I = (- 2pV ' u + T : V u)dR. JQ 

To find the corresponding set of partial differential equations which minimize the functional, the 
Euler-Lagrange equation 
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Figure 21. Example of creeping flow calculation for isothermal BFS problem with free boundary condition applied 
at x = l  

Table I. Calculated values of the energy functional for various 
boundary conditions applied at x= 15 

u and u specified I=  133.713529 
z,,=O and u = O  I = 129.376384 
T,, = 0 and T , ~  free I = 129.332292 
Free boundary condition 1=129.332111 

must be evoked for each of the unknowns u, u and p ,  wherefis the integrated of equation (29). This 
differentiation is straightforward and yields the Stokes limit of the Navier-Stokes equations. 
Table I shows calculated values for the functional I for various outflow boundary conditions 
applied at x = 15. It suggests that among all possible boundary conditions applied at the synthetic 
boundary, the free boundary condition minimizes the functional I ,  which in cases of real 
boundaries is minimized by the zero-traction condition. The last two values in Table I are close to 
one another because it turns out that z,, is nearly zero at x=  15. 

Thus it appears that the free boundary condition indeed results in the least value of the 
functional I (for Stokes flow) and therefore yields the most reasonable solution among all the 
possible choices at the synthetic outflow. Somehow, the solution obtained with the free boundary 
condition on a truncated domain mimics the solution on the actual unbounded domain, as 
evidenced by two different facts: (a) by the fact that the solutions obtained on the truncated 
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domain by means of the free boundary condition were almost identical to those obtained by 
means of the very long domain where the influence of any ouflow boundary condition does not 
propagate upstream to the truncated domain and (b) by the minimization of the functional. This 
may suggest that ‘instead of minimizing a functional in a truncated domain subject to essential or 
natural boundary conditions on every portion of its boundary, including synthetic outlets where 
the appropriate boundary conditions are not known’, it is preferable ‘to minimize the functional 
in the truncated domain and on the synthetic outlet subject to boundary conditions on every 
portion of the boundary but the synthetic outflow’. 

In the finite element formulation these principles apply as follows. For simplicity the 
differential equation 

V.T=O 

is solved in each finite element of volume 6. Then according to the Galerkin method (Section 4) 
and by applying the divergence theorem, equation (3 1) becomes 

j4(V.T)didK= - (32) 

For internal elements the last (boundary) term cancels out during the assembly element by 
element, because di is common to adjacent elements evaluated at their common boundary and 
their corresponding n are opposite to each other. For an element adjacent to the synthetic 
boundary, for the same reasons, the only surviving boundary term is the one on the synthetic 
boundary, say Sb, and therefore 

(33) 

which is essentially the free boundary condition. Equation (33) can also be written, given V .T=O, 
as 

(34) 

The physical significance of the last equation is a relation between the variation of the weighted 
quantity Tc$~ and its ‘flux’ through the synthetic outflow of the corresponding boundary element. 
Thus the entire element K , b  serves as a synthetic boundary zone and it collapses to the actual 
boundary S, when the tesselation becomes infinitely fine there. 

In light of lacking rigorous mathematical analysis for systems of non-linear equations in 
general, it cannot be concluded that the free boundary condition will work with any semi-infinite 
flow, cases of instance being some simple one-dimensional second-order differential equations 
solved with linear basis functions, e.g. T+ C =0,19 but not T- T +  C = 0. Also, the free boundary 
condition addresses flows on semi-infinite domains, where the fluid content may decay hyperboli- 
cally, and cannot replace well-defined essential or natural conditions at natural boundaries. The 
application of the free boundary condition appears to be independent of the order of the basis 
functions. It can in principle be implemented with finite difference methods too, by evaluating 
one-sided derivatives at the synthetic boundary in terms of the upstream grid values. Finally, the 
free boundary condition was found to perform as well with time-dependent semi-infinite flows, 
where experimentally observed travelling and solitary waves as well as rates of spreading and 
levelling of liquids on substrates have been predicted.*’ 
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7. CONCLUSIONS 

At synthetic boundaries it is uncertain which boundary condition may work when the physics of 
the problem is not known. The extension of the weak form of the momentum equation to such 
synthetic boundaries, which eliminates the necessity of imposing arbitrary outflow boundary 
conditions, has already been proven in several problems to give satisfactory results that predict 
quite well the physical phenomena occurring in these cases. In this work it has been shown that 
this idea can be successfully applied to two prototype flows which are receiving a great deal of 
attention in studying open boundary conditions at synthetic outflows. This approach is especially 
useful when analytical and asymptotic techniques cannot predict the behaviour of the flow far 
downstream from the synthetic outflow and therefore appropriate boundary conditions at these 
synthetic boundaries are impossible. The approach was found to work even when the flow is not 
developed at the synthetic ouflow (i.e. synthetic outflow which cuts a developing eddy), where 
conventional approaches may fail completely. 

The free boundary condition is equivalent to a relation between the variation of a weighted 
quantity and its ‘flux’ through the synthetic boundary, which is inherent to the weak finite element 
solution of the momentum equations. It has been shown that among several alternative open 
boundary conditions, the free boundary condition, which simply extends the validity of the 
momentum equations to the synthetic boundaries, minimizes the appropriate energy functional 
for the unbounded Stokes flow. 
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APPENDIX: NOTATION 

Froude number 
identity matrix 
Jacobian matrix 
unit vector in direction of gravity 
unit normal vector 
pressure 
Peclet number 
vector of unknowns in Newton iteration 
radial direction in cylindrical co-ordinates 
residual of Galerkin FEM 
Reynolds number 
temperaure 
stress tensor 
fluid velocity in x-direction 
velocity vector of fluid 
fluid velocity in y-direction 
Cartesian co-odinate directions 
axial direction in cylindrical co-ordinates 
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Greek letters 

1 Maxwell fluid relaxation time 
T normal shear stress 
4 biquadratic basis functions * bilinear basis functions 

Superscript 

1 ith node in FEM 

Subscripts 

C continuity equation 
E energy equation 
M momentum equation 

Mathematical symbols 

d partial derivative 
v nabla operator 
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